首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   110696篇
  免费   1672篇
  国内免费   2012篇
  2023年   235篇
  2022年   236篇
  2021年   895篇
  2020年   575篇
  2019年   827篇
  2018年   12434篇
  2017年   11068篇
  2016年   8155篇
  2015年   1689篇
  2014年   1628篇
  2013年   1747篇
  2012年   5820篇
  2011年   14186篇
  2010年   12859篇
  2009年   9043篇
  2008年   10743篇
  2007年   12251篇
  2006年   1049篇
  2005年   1182篇
  2004年   1485篇
  2003年   1534篇
  2002年   1209篇
  2001年   597篇
  2000年   459篇
  1999年   315篇
  1998年   173篇
  1997年   181篇
  1996年   162篇
  1995年   119篇
  1994年   90篇
  1993年   99篇
  1992年   130篇
  1991年   120篇
  1990年   75篇
  1989年   59篇
  1988年   60篇
  1987年   57篇
  1986年   38篇
  1985年   51篇
  1984年   15篇
  1983年   34篇
  1982年   11篇
  1981年   11篇
  1972年   248篇
  1971年   277篇
  1969年   11篇
  1965年   14篇
  1962年   25篇
  1944年   12篇
  1940年   10篇
排序方式: 共有10000条查询结果,搜索用时 812 毫秒
991.
The relationships between aggregate cell types, cell growth, and the triptolide, wilforgine, and wilforine content in aggregate cell suspension cultures of Tripterygium wilfordii Hook. f. were examined. Aggregate cells larger than 2?mm grew quickly and constituted the majority of the white aggregates. The accumulation of triptolide was strongly correlated with the size of the aggregates and the length of the culture period. The aggregates 0.5?C2?mm in diameter accumulated higher triptolide content than those with other sizes throughout the culture. However, the size of the aggregate cells did not significantly affect on the wilforgine and wilforine content. Two other kinds of aggregate cells, the brown and green aggregate cells, also formed in the suspension cultures. The smallest aggregates (0.1?C0.5?mm) had a lower biomass and growth rate and had more chloroplasts and higher alkaloid content. The results of this study can be used to improve the selection process for the mass production of triptolide, wilforgine, and wilforine from cell suspension cultures.  相似文献   
992.
Expression plasmids carrying different deoxysugar biosynthetic gene cassettes and the gene encoding a substrate-flexible glycosyltransferase DesVII were constructed and introduced into Streptomyces venezuelae YJ003 mutant strain bearing a deletion of a desosamine biosynthetic (des) gene cluster. The resulting recombinants produced macrolide antibiotic YC-17 analogs possessing unnatural sugars replacing native d-desosamine. These metabolites were isolated and further purified using chromatographic techniques and their structures were determined as d-quinovosyl-10-deoxymethynolide, l-rhamnosyl-10-deoxymethynolide, l-olivosyl-10-deoxymethynolide, and d-boivinosyl-10-deoxymethynolide on the basis of 1D and 2D NMR and MS analyses and the stereochemistry of sugars was confirmed using coupling constant values and NOE correlations. Their antibacterial activities were evaluated in vitro against erythromycin-susceptible and -resistant Enterococcus faecium and Staphylococcus aureus. Substitution with l-rhamnose displayed better antibacterial activity than parent compound YC-17 containing native sugar d-desosamine. The present study on relationships between chemical structures and antibacterial activities could be useful in generation of novel advanced antibiotics utilizing combinatorial biosynthesis approach.  相似文献   
993.
994.
995.
Coffee is one of the world’s most important agricultural commodities. Coffee belongs to the Rubiaceae family in the euasterid I clade of dicotyledonous plants, to which the Solanaceae family also belongs. Two bacterial artificial chromosome (BAC) libraries of a homozygous doubled haploid plant of Coffea canephora were constructed using two enzymes, HindIII and BstYI. A total of 134,827 high quality BAC-end sequences (BESs) were generated from the 73,728 clones of the two libraries, and 131,412 BESs were conserved for further analysis after elimination of chloroplast and mitochondrial sequences. This corresponded to almost 13 % of the estimated size of the C. canephora genome. 6.7 % of BESs contained simple sequence repeats, the most abundant (47.8 %) being mononucleotide motifs. These sequences allow the development of numerous useful marker sites. Potential transposable elements (TEs) represented 11.9 % of the full length BESs. A difference was observed between the BstYI and HindIII libraries (14.9 vs. 8.8 %). Analysis of BESs against known coding sequences of TEs indicated that 11.9 % of the genome corresponded to known repeat sequences, like for other flowering plants. The number of genes in the coffee genome was estimated at 41,973 which is probably overestimated. Comparative genome mapping revealed that microsynteny was higher between coffee and grapevine than between coffee and tomato or Arabidopsis. BESs constitute valuable resources for the first genome wide survey of coffee and provide new insights into the composition and evolution of the coffee genome.  相似文献   
996.
Phanerochaete chrysosporium has been identified as an effective bioremediation agent for its biosorption and degradation ability. However, the applications of P. chrysosporium are limited owing to its long degradation time and low resistance to pollutants. In this research, nitrogen-doped TiO2 nanoparticles were loaded on P. chrysosporium to improve the remediation capacity for pollutants. The removal efficiencies were maintained at a high level: 84.2 % for Cd(II) and 78.9 % for 2,4-dichlorophenol (2,4-DCP) in the wide pH range of 4.0 to 7.0 in 60 h. The removal capacity of immobilized P. chrysosporium loaded with nitrogen-doped TiO2 nanoparticles (PTNs) was strongly affected by the initial Cd(II) and 2,4-DCP concentrations. The hyphae of PTNs became tight, and a large amount of crystals adhered to them after the reaction. Fourier transform infrared spectroscopy showed that carboxyl, amino, and hydroxyl groups on the surface of PTNs were responsible for the biosorption. In the degradation process, 2,4-DCP was broken down into o-chlorotoluene and 4-hexene-1-ol. These results showed that PTNs is promising for simultaneous removal of Cd(II) and 2,4-DCP from wastewater.  相似文献   
997.
High acetate accumulation was produced during glucose fermentation in high cell density cultures, which is harmful to cell growth. In order to reduce the negative impact of acetate accumulation on the fermentation products, we introduced the Escherichia coli acetyl-CoA synthetase (ACS) gene into the marine microalga Schizochytrium sp. TIO1101, generating genetically modified ACS transformants. The results of PCR and blotting analyses showed that the exogenous ACS gene was incorporated into the genome and successfully expressed. The engineered Schizochytrium increased the pH value and reduced the acetate concentration in the final fermentation medium significantly. Furthermore, the ACS transformants exhibited faster growth and glucose consumption rates than the wild-type strain. The biomass and fatty acid proportion of ACS transformants increased by 29.9 and 11.3 %, respectively. Taken together, the data suggest that ACS overexpression in Schizochytrium might improve the utilization of carbon resource and decrease the production of acetate byproduct. These results demonstrate that application of ACS in metabolic genetic engineering could improve the properties of Schizochytrium significantly.  相似文献   
998.
Micro-organisms are vital for the functioning of all food webs and are the major drivers of the global biogeochemical cycles. The microbial community compositions and physicochemical conditions of the different water masses in the North Sea, a biologically productive sea on the northwestern European continental shelf, were studied during two summer cruises, in order to provide detailed baseline data for this region and examine its microbial biogeography. For each cruise the stations were clustered according to their physicochemical characteristics and their microbial community composition. The largest cluster, which covered most of the central and northern North Sea, consisted of stations that were characterized by a thermally stratified water column and had low chlorophyll a autofluorescence and generally low microbial abundances. The second main cluster contained stations that were dominated by picoeukaryotes and showed the influence of influxes of North Atlantic water via the English Channel and south of the Shetland Islands. The third main cluster was formed by stations that were dominated by cyanobacteria and nanoeukaryotes in the reduced salinity Norwegian Coastal and Skagerrak waters, while the fourth cluster represented the German Bight, a region with strong riverine input, high nutrient concentrations, and consequently high heterotrophic bacterial and viral abundances. Despite the complex and dynamic hydrographic nature of the North Sea, the consistent distinctions in microbiology between these different hydrographic regions during both cruises illustrate the strong links between the microbial community and its environment, as well as the possibility to use microorganisms for long-term monitoring of environmental change.  相似文献   
999.
Two novel glycoside hydrolase (GH) family 12 xyloglucanase genes (designated RmXEG12A and RmXEG12B) were cloned from the thermophilic fungus Rhizomucor miehei. Both genes contained open reading frames of 729 bp encoding 242 amino acids. Their deduced amino acid sequences shared 68 % identity with each other and less than 60 % with other xyloglucanases. The two genes, without the sequences for the signal peptides, were cloned and successfully expressed in Escherichia coli as active xyloglucanases, designated RmXEG12A and RmXEG12B, with similar molecular masses—25.6 and 25.9 kDa, respectively. RmXEG12A showed optimal activity at pH?6.5 and 65 °C, RmXEG12B at pH?5.0 and 60 °C. Both recombinant xyloglucanases displayed very high specific activities, 6,681.4 and 3,092.2 U?mg?1, respectively, toward tamarind xyloglucan, but no activity toward carboxymethylcellulose, Avicel, or p-nitrophenyl derivatives. The main products of tamarind xyloglucan hydrolysis by the two xyloglucanases were XXXG, XXLG/XLXG, and XLLG (where G is an unsubstituted β-d-Glc residue, X is a xylosylated β-d-Glc residue, and L is a β-d-Glc residue substituted by xylosyl-galactose).  相似文献   
1000.
Persisters are a small subpopulation of bacterial cells that are dormant and extremely tolerant to antibiotics. The intrinsic antibiotic tolerance of persisters also facilitates the development of multidrug resistance through acquired mechanisms based on drug resistance genes. In this study, we demonstrate that (Z)-4-bromo-5-(bromomethylene)-3-methylfuran-2(5H)-one (BF8) can reduce persistence during Escherichia coli growth and revert the antibiotic tolerance of its persister cells. The effects of BF8 were more profound when the pH was increased from 6 to 8.5. Although BF8 is a quorum sensing (QS) inhibitor, similar effects were observed for the wild-type E. coli RP437 and its ΔluxS mutant, suggesting that these effects did not occur solely through inhibition of AI-2-mediated QS. In addition to its effects on planktonic persisters, BF8 was also found to disperse RP437 biofilms and to render associated cells more sensitive to ofloxacin. At the doses that are effective against E. coli persister cells, BF8 appeared to be safe to the tested normal mammalian cells in vitro and exhibited no long-term cytotoxicity to normal mouse tissues in vivo. These findings broadened the activities of brominated furanones and shed new light on persister control.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号